Correction: Carnitine supplementation to obese Zucker rats prevents obesity-induced type I to type II muscle fiber transition and favors an oxidative phenotype of skeletal muscle
نویسندگان
چکیده
BACKGROUND In the present study, we tested the hypothesis that carnitine supplementation counteracts obesity-induced muscle fiber transition from type I to type II. METHODS 24 obese Zucker rats were randomly divided into two groups of 12 rats each (obese control, obese carnitine) and 12 lean Zucker rats were selected for lean control group. A control diet was given to both control groups and a carnitine supplemented diet (3 g/kg diet) was given to obese carnitine group for 4 wk. Components of the muscle fiber transformation in skeletal muscle were examined. RESULTS The plasma level of carnitine were lower in the obese control group compared to the lean control group and higher in the obese carnitine group than in the other groups (P < 0.05). Plasma concentrations of triglycerides and non-esterified fatty acids were increased in obese animals compared to lean animals and the obese carnitine group had lower level compared to the obese control group (P < 0.05). The obese carnitine group had an increased number of type I muscle fibers and higher mRNA levels of type I fiber-specific myosin heavy chain, regulators of muscle fiber transition and of genes involved in carnitine uptake, fatty acid transport, β-oxidation, angiogenesis, tricarboxylic acid cycle and thermo genesis in M. rectus femoris compared to the other groups (P < 0.05). CONCLUSION The results demonstrate that carnitine supplementation to obese Zucker a rat counteracts the obesity-induced muscle fiber transition and restores the muscle oxidative metabolic phenotype. Carnitine supplementation is supposed to be beneficial for the treatment of elevated levels of plasma lipids during obesity or diabetes.
منابع مشابه
Mangiferin protects against adverse skeletal muscle changes and enhances muscle oxidative capacity in obese rats
Obesity-related skeletal muscle changes include muscle atrophy, slow-to-fast fiber-type transformation, and impaired mitochondrial oxidative capacity. These changes relate with increased risk of insulin resistance. Mangiferin, the major component of the plant Mangifera indica, is a well-known anti-inflammatory, anti-diabetic, and antihyperlipidemic agent. This study tested the hypothesis that m...
متن کاملNiacin supplementation increases the number of oxidative type I fibers in skeletal muscle of growing pigs
BACKGROUND A recent study showed that niacin supplementation counteracts the obesity-induced muscle fiber switching from oxidative type I to glycolytic type II and increases the number of type I fibers in skeletal muscle of obese Zucker rats. These effects were likely mediated by the induction of key regulators of fiber transition, PGC-1α and PGC-1β, leading to muscle fiber switching and up-reg...
متن کاملNiacin supplementation induces type II to type I muscle fiber transition in skeletal muscle of sheep
BACKGROUND It was recently shown that niacin supplementation counteracts the obesity-induced muscle fiber transition from oxidative type I to glycolytic type II and increases the number of type I fibers in skeletal muscle of obese Zucker rats. These effects were likely mediated by the induction of key regulators of fiber transition, PPARδ (encoded by PPARD), PGC-1α (encoded by PPARGC1A) and PGC...
متن کاملThe carnitine status does not affect the contractile and metabolic phenotype of skeletal muscle in pigs
Background Recently, supplementation of L-carnitine to obese rats was found to improve the carnitine status and to counteract an obesity-induced muscle fiber transition from type I to type II. However, it has not been resolved if the change of muscle fiber distribution induced in obese rats and the restoration of the "normal" muscle fiber distribution, which is found in lean rats, in obese rats...
متن کاملLevo-Carnitine Reduces Oxidative Stress and Improves Contractile Functions of Fast Muscles in Type 2 Diabetic Rats
Background: Metabolic derangements in type 2 diabetes mellitus (T2DM) are likely to affect skeletal muscle contractile functions adversely. Levo-carnitine improves muscle contractile functions in healthy humans and rats and corrects metabolic derangements in T2DM. Therefore, it is likely to improve muscle contractile functions in T2DM as well. This study was designed to determine the effect of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2013